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1- A Markov chain version of the basic SIR model
The classes of the well known Susceptible-Infected-Removed (SIR) model
are splitted into subclasses in order to adapt the model to the observation
of the dates in which each individual transits the Covid when he or she
is identified as been infected with Sars-CoV-2. Non-identified infected
individuals are also included in hidden classes of the model.

The kind of data expected to be available for each identified person are
the dates of

• infection,

• first symptoms,

• hospital confinement,

• transfer to intensive care unit,

• discharge from hospital,

• complete recovery or

• death,

whatever be appliable.



Consequently we split the population assumed of constant size N
in the following classes integrated by persons with the indicated
characteristics:

S: Susceptible.

I0: Infected not (yet) detected.

I1: Infected, detected by the Health System, put into
quarantine.

I2: In hospital confinement.

I3: Transferred to intensive care unit.

Q: Discharged from hospital, still infectious, in quarantine.

R: Recovered (non infectious, at least for a reasonable period of
time).

D: Deceased.



We assume that each individual in the population of size N is
initially susceptible except for one or a few individuals infected
that start the process of contagion. The former ones constitute
the class S, and the latter the class I0.

• A person in S that is infected moves to class I0.

• A person in I0 can be detected and moves to I1 or be
recovered after remaining some time infected and infectious.

• A person in I1 can recover and move to Q,R or get worse
and be confined to I2 and eventually recover to Q or get
even worse and move to I3 and so forth.

• . . .

The possible paths followed by the members of the population are
indicated in next figure.





Our main assumptions are:

1 Each individual follows a Markov Chain with daily transitions from
one class to another with the probabilities indicated in next dia-
gram.

The amount of persons in a class at day d is denoted by the name
of the class with subscript d.

The transit through the chain of persons not entering I1 is not
observed. If they arrive to I1 their path is registered up to the end
of the period of observation dI , dI+1, . . . , dF .

2 The individual paths are independent copies of each other.

REMARK: As a consequence, the time in each class has a geometric
probability distribution with expected time equal to the inverse of the
probability of leaving the class.
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Parameters: γ1, γ2, γ3, γ4, p0, p1, p2, µ, β0, β1.β2, β3, βQ, N



Let us denote Cν := (Cν,d)d=dI ,dI+1,...,dF the chain indicating
the class Cν,d where the ν-th person is at day d, and C :=
(C1, C2, . . . , CN ) the chain that joins the information of the en-
tire population. If any day two individuals arbitrarily chosen are
interchanged, the distribution of the chain C remains the same.
Then the family of random vectors

Xd = (Sd, I0,d, I1,d, I2,d, I3,d, Qd, Rd, Dd) = (Xd,1, Xd,2, . . . , Xd,8),

one for each day, with components

Xd,i =

N∑
ν=1

1{Cν,d=i}, i = 1, 2, . . . , 8

equal to the amount of individuals at each class at day d is a
Markov chain with state space equal to the subset of N8, N =
{0, 1, 2, . . . , N} composed by the vectors with sum of components
equal to N .



We introduce now two modifications to the basic chain due to the
fact that the expected time that each person remains in one class
may be different according to the class to which shall be directed
in the next transition.

• A person in I0 can be detected as bearing Sars CoV-2 and
be put in quarantine in I1, or remain undetected and carry
the disease until completely recovered. This last case implies a
stay of about twenty days at I0, while been detected can occur
in about five days. This is taken into account in our model
by adding a new class I∗0 between I0 and the continuation
towards recuperation. An expected time of five days in I0
and fifteen days in I∗0 fixes the chain and leads to a local
scheme like this:
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• Similar situations may appear at other classes. We shall as-
sume that the transit when a patient leaves I2 can occur either
almost immediately after been confined in the hospital if the
disease gets worse and leads him or her to I3, or the stay in
I2 can last longer until been transferred to Q. For this case
the local scheme to apply is as follows:
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We make one last modification to separate the hidden states from the
observed ones. In particular, this implies to split R into R0 that con-
tains the recovered patients after been identified as infected, and R∗

constituted by the recovered persons after going through the disease un-
detected:



2-Parameter estimation
2-1- Estimation of the probabilities of observed transitions.

Let K denote the number of observable classes. Each individual
in class xi at day d < dF provides a realization of a multinomial
random variable with parameters (1,pi = (pi,j)j=1,2,...,K), namely,
the indicator of the class of the same individual at day d+1. These
variables are independent and contain all the information about
the parameter pi provided by the observation of the epidemic.

The joint probability of all variables associated to class i is∏N
ν=1

∏dF−1
d=dI

pCν,d,Cν,d+1
=

∏K
i,j=1 p

ni,j
i,j ,

with
ni,j =

∑N
ν=1

∑dF−1
d=dI

1{Cν,d=i,Cν,d+1=j},

hence the maximum likelihood estimators of pi,j are

p̂i,j =
ni,j∑K
j=1 ni,j



This solves the estimation problem for the probabilities

γ1, γ2, γ
∗
2 , γ3, p1, p2, µ.

The transit from Q0 to R0

may not be observed, because
a common practice is to dis-
charge patients from hospitals
when they are recovered from
symptoms but still infectious,
and sent to home quarantine.
In that case γ4 is estimated
according to the usual prac-
tice of the health system, as
the inverse of the duration of
quarantine.
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2-2- Probabilities estimation for the hidden part of the chain

The hidden classes S, I0, I
∗
0 , R

∗
0 are linked to the observed part of

the chain through the inputs

Hd =

N∑
ν=1

1{Cν,d−1=I0,Cν,d=I1}

assumed to be observed.
The parameters to be estimated are the probabilities γ0, p0 and
the coefficients β0, β

∗
0 , β1, β2, β3, βQ involved in the calculation of

the probability

pS,I0 =

∑3
j=0 βjIj,d + β∗0I

∗
0,d + βQQd + β2I

∗
2,d

N
.

The rate of contagion increases with the amount of infectious indi-
viduals, and the expression adopted for pS,I0 is a linear approach
for that dependence.



All coefficients and consequently β depend on the social isolation
measures adopted, and the sanitary precautions applied to reduce
contagions, so that they may change over time. These changes
can be reflected by adopting simple time varying expressions for
those parameters, for instance, sectionally constant functions, or
with sectionally constant increments.

We shall introduce a partition d0 = dI < d1 < · · · < dM = dF , and
assume that each coefficient is constant on each of the intervals
dm−1 ≤ d ≤ dm.

The knowledge of the operating provisions applicable to enhance
social isolation or the re-establishment of activities and services
suggest where to place the end-points of the intervals of constancy
of the coefficients or their increments, to be established a priori as
initial approximations for optimization algorithms.



Some examples of end-points of such intervals are in Uruguay

• 03/13 to 03/19 the government adopts strong measures of
social isolation,

• 04/4-12 Easter motivates a relaxation of the voluntary
quarantine,

• 04/13 the construction sector resumes its activities,

• 04/23 rural schools restart face-to-face classes,

• 06/09 shopping centres are reopened,

• 06/1-15-29 gradual return of pre-school, primary, secondary
and technical education activities,

• ...



We propose two different approaches in order to estimate the pa-
rameters of the hidden part of the model:

• a least squares approximation between the expected and
observed values of the inputs Hd to I1, and

• a maximum likelihood procedure based on the application of
a Viterbi algorithm.

We start by considering the former one, which is much simpler
than the latter.



2-2-a Least squares probabilities estimation
Let us introduce the notation pS,I0 = βdId/N where
Id = I0,d + I∗0,d + Ǐd (with Ǐd := I1,d + I2,d + I∗2,d + I3,d + IQ,d)
is the total amount of infected individuals.
The paths of the hidden part of the chain satisfy:

Sd = Sd−1 −Bd−1, Bd−1 ∼ Bin(Sd−1, βId−1/N)

I0,d = Md−1,1 +Bd−1,Md−1 ∼ Mult(I0,d−1, (1− p0 − γ0, p0, γ0))
I∗0,d = Md−1,3 +B∗d−1, B

∗
d−1 ∼ Bin(I∗d−1, 14/15)

Hd = Md−1,2

and the conditional expectations given the past Ad−1 up to the
day d− 1 are

E(Sd|Ad−1) = Sd−1 − βSd−1Id−1/N
E(I0,d|Ad−1) = I0,d−1(1− p0 − γ0) + βSd−1Id−1/N

E(I∗0,d|Ad−1) = I0,d−1γ0 + I∗d−1 × 14/15

E(Hd|Ad−1) = I0,d−1p0



The following assumptions simplify the model:

• The contagion due to infected persons in quarantine or in
hospital confinement is negligible compared with the one due
to infected individuals non detected and consequently with
unrestricted contacts with susceptible persons. Then pS,I0

reduces to
β0,dI0,d+β

∗
0,dI

∗
0,d

N .

• Let us identify the coefficient β∗0,d with β0,d, since the classes
I0 and I∗0 are the result of artificially splitting the class of
unobserved infected individuals to allow for different times
of transition towards I1 or R∗. This implies that β becomes
equal to β0.



These simplifications reduce the equations of the conditional ex-
pectations to

E(Sd|Ad−1) = Sd−1 − βSd−1(I0,d−1 + I∗0,d−1)/N

E(I0,d|Ad−1) = I0,d−1(1− p0 − γ0) + βSd−1(I0,d−1 + I∗0,d−1)/N

E(I∗0,d|Ad−1) = I0,d−1γ0 + I∗d−1 × 14/15

E(Hd|Ad−1) = I0,d−1p0.

The independence of the binomial and multinomial variables imply
that the expectation of products of variables in the right-hand
members are equal to the products of their expectations, except
for the product SdI0,d.



The estimate

ESdEI0,d −E(SdI0,d) = E(B2
d−1)− (EBd−1)

2

= VarE(Bd−1|Ad−1) + EVar(Bd−1|Ad−1)
< VarβSd−1(I0,d−1 + I∗0,d−1)/N + EβSd−1(I0,d−1 + I∗0,d−1)/N

< Eβ2(I0,d−1 + I∗0,d−1)
2 + Eβ(I0,d−1 + I∗0,d−1)

shows that while the proportion of infected persons is very small,
the substitution of ESdEI0,d for E(SdI0,d) produces a negligible
relative error of the order of 1/N .



By replacing the random transitions by their approximate expec-
tations, the expected paths of the hidden part of the chain, are
computed by means of the recurrence

ESd = ESd−1 − βESd−1(EI0,d−1 + EI∗0,d−1)/N

EI0,d = EI0,d−1(1− p0 − γ0) + βESd−1(EI0,d−1 + EI∗0,d−1)/N

EI∗0,d = EI0,d−1γ0 + EI∗d−1 × 14/15

EHd = EI0,d−1p0.

Let us recall that given the partition d0 = dI < d1 < · · · < dM
= dF , we assume that β0,d = bm for dm−1 ≤ d ≤ dm is sectionally
constant. Therefore the simplifications that we have introduced
reduce the parameters to be estimated to

b := (b1, . . . , bM ), d := (d1, . . . , dM−1), γ0, p0.



Let us compute the least squares estimates of the parameters

(b̃, d̃, γ̃0, p̃0) = arg minSS(b,d, γ0, p0)

for SS =
∑dF

d=dI
(EHd − hd)2 where

• hd =
∑N

ν=1 1{Cν,d−1=I0,Cν,d=I1} is the observed value of the
input to I1 at day d, (dI ≤ d ≤ dF ), and

• EHd are the expectations obtained from the equations of the
expected path with parameters b,d, γ0, p0.

How difficult is the optimization procedure obviously depends on
the number and kind of parameters included in the model. With
the selected parameters, M = 4 and data resembling the evolution
of the Covid-19 epidemic in Uruguay, the sum of squares presents
more than one relative minima.



2-2-b Maximum likelihood probabilities estimation

The hidden Markov chain with states Xd = (Sd, I0,d, I
∗
0,d, Hd) in

the state space N4 has transition probabilities depending on the
parameters β, γ0, p0 and emits Hd ∈N with probability one.

We keep the notations and simplifications introduced in §2-2-a.

Then the well known Viterbi algorithm may be used to obtain the
paths Xd := (XdI , XdI+1, . . . , Xd) with Xd = x that maximize the
conditional probabilities given that Hd := (HdI , HdI+1, . . . ,Hd) is
equal to hd := (hdI , hdI+1, . . . , hd):

m(x, d, β, γ0, p0,h) = max
xd,xd=x

P{Xd = xd|Hd = hd}



The standard algorithm applies a forward recurrence in d to de-
termine that maxima, and the maximum probability attained by
a complete path is `(β, γ0, p0) = maxxm(x, dF , β, γ0, p0,h).

The maximum likelihood estimators are then

(β̂, γ̂0, p̂0) = arg max `(β, γ0, p0).

The algorithm adds a backward recurrence in order to find the
maximizing path, thus obtaining a maximum likelihood estima-
tion of the sizes of the hidden classes along the path, but this
can be avoided if our purpose is just to obtain the probabilities
estimations.



Least squares estimation for the hidden chain

parameters sum of squares
b0 b1 b2 b3 d1 d2 d3 p0

2.335593 0.101232 0.159153 0.138412 4 19 43 0.187314 77.365
2.494468 0.086325 0.122817 0.102434 4 20 44 0.166285 78.226
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The difference between the scenarios of the previous page is quan-
titatively small, but the following graph shows that the second
one (green dotted lines) resists better than the first (blue dotted
lines) the effect of increasing the contagious rate after the end of
the period of observation.
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The lines on gray background corre-
spond to the expected accumulated
number of deaths by 2021/12/31, and
the lines on magenta background indi-
cate the expected number of patients
in ICU at the same time.

The simulation of the estimated paths of the system is aided by
an interactive application.
https://emcabana.shinyapps.io/pred9june/

https://emcabana.shinyapps.io/pred9june/




Complement to the least squares estimation

(added after the 3 July presentation in the Seminar)

We have relaxed the imposition p0 + γ0 = 0.2 due to assume that
the mean time in I0 is five days, and have included p0 and γ0
as free parameters in the least squares estimation. This leads to
several new minima, from which we select the following two that
differ mainly in the estimation of the mean number of days spent
before infected people are identified:

parameters sum of
b0 b1 b2 b3 d1 d2 d3 p0 γ0 squares

1.243393 0.578258 0.495824 0.552874 5.82 49.69 65.00 0.833906 0.027178 72.576026
1.204182 0.206181 0.165161 0.192428 4.63 49.00 66.77 0.387359 0.066053 84.884535

These new estimations are added as Scenarios 3 and Scenario 4
in the Shiny application.



0 20 40 60 80

0
20
0

40
0

60
0

80
0

10
00

days

ca
se
s

0 20 40 60 80

0
20
0

40
0

60
0

80
0

10
00

days

ca
se
s

number of cases on dF
S I0 I∗0

2999114 3.86 2.05
2.998991 8.39 10.74

proportion of
undetected infections

3.156%
14.568%

Again the scenario with larger proportion of undetected infections
resist better an increase of the contagious rate, as can be verified
by using the interactive appliation.
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