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Under-reported data

Under-reporting in data refers to some issue, incident, phenomenon
which is responsible to report less than the actual level of count data.

The problem of under-reporting is very common in many contexts such
as epidemiological, biomedical and social research among others.

Due to this phenomenon

• inferences might be highly biased

• assumptions of classical models might be invalidated.

Regarding public health, it is well known that some diseases have been
traditionally under-reported.

There can be several sources of under-reporting: accuracy of public
health registers, social issues, economical interests, . . .



Under-reported data issue



• We have devised a very simple methodology for modelling such phe-
nomenon, that has worked well in the past.

• It works even for non-stationary series with patterns of trend and/or
seasonality by specifying appropriate link functions in the parame-
ters.

• Covariates can also be included.



INAR-hidden Markov chain model

Consider a hidden process Xn with Po-INAR(1) structure:

Xn = α ◦Xn−1 +Wn(λ),

where 0 < α < 1 is a fixed parameter, Wn ∼ Poisson(λ), i.i.d., indepen-
dent of Xn and ◦ is the binomial thinning operator:

α ◦Xn−1 =

Xn−1∑
i=1

Zi

where Zi are i.i.d Bernoulli(α). The INAR(1) process is a homogeneous
Markov chain with transition probabilities

P(Xn = i|Xn−1 = j) =

i∧j∑
k=0

(
j

k

)
αk(1− α)j−kP(Wn = i− k)



A simple under-reporting scheme

The under-reported phenomenon is modelled by assuming that the ob-
served counts are

Yn =

{
Xn with probability 1− ω
q ◦Xn with probability ω,

where ω and q represent the frequency and intensity of the under-reporting
process, respectively.
That is, we observe

Yn = (1− 1n)Xn + 1n

Xn∑
j=1

ξj 1n ∼ Bern(ω), ξj ∼ Bern(q)



• The stationary distribution of an INAR(1) processXn with Poisson(λ)
innovations is Poisson with mean and variance

µX = σ2
X =

λ

1− α

• Its auto-covariance and auto-correlation functions are

γX(k) = α|k|λ ρX(k) = α|k|

• EYn = µY = µX(1− ω(1− q)).
• The auto-covariance function of the observed process Yn is

γY (k) = (1− ω(1− q))2α|k|µX

Hence, the auto-correlation function of Yn is a multiple of ρX(k):

ρY (k) =
(1− α)(1− ω(1− q))2

(1− α)(1− ω(1− q)) + λ(ω(1− ω)(1− q)2)
α|k| = c(α, λ, ω, q)α|k|.



Parameter estimation based on ML

The likelihood function of Y is directly intractable,

P (Y ) =
∑
X

P (X,Y ) =
∑
x

P (Y |X = x)P (X = x)

The forward algorithm1 used in the context of HMC is a suitable
option.

Consider the forward probabilities

αk(Xk) = P (Yk|Xk)
∑
Xk−1

P (Xk|Xk−1)αk−1(Xk−1),

with α1(X1) = P (X1)P (Y1|X1). Then, the likelihood function is

P (Y ) =
∑
n

αn(Xn).

1T.C. Lystig, J.P. Hughes (2002), Exact computation of the observed information
matrix for hidden Markov models, Jr of Comp.and Graph. Stat.
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Latent	states

Observed	states

𝐏(𝐗𝟐 = 𝐱𝟐|𝐗𝟏 = 𝐱𝟏 ) 𝐏(𝐗𝟑 = 𝐱𝟑|𝐗𝟐 = 𝐱𝟐 ) 𝐏(𝐗𝐍 = 𝐱𝐍|𝐗𝐍&𝟏 = 𝐱𝐍&𝟏)

𝐏(𝐘𝟏 = 𝐲𝟏|𝐗𝟏 = 𝐱𝟏 ) 𝐏(𝐘𝟐 = 𝐲𝟐|𝐗𝟐 = 𝐱𝟐 ) 𝐏(𝐘𝟑 = 𝐲𝟑|𝐗𝟑 = 𝐱𝟑) 𝐏(𝐘𝐍&𝟏 = 𝐲𝐍&𝟏|𝐗𝐍&𝟏 = 𝐱𝐍&𝟏) 𝐏(𝐘𝐍 = 𝐲𝐍|𝐗𝐍 = 𝐱𝐍)

P (Yk|Xk) and P (Xk|Xk−1) are the so-called emission and transition
probabilities.



Parameter estimation based on ML (II)

Transition probabilities:

P (Xn = xn | Xn−1 = xn−1) = e−λ
xn∧xn−1∑
j=0

(
xn−1
j

)
αj(1− α)xn−1−j λxn−j

(xn − j)!

Emission probabilities:

P (Yi = j | Xi = k) =


0 if k < j
(1− ω) + ωqk if k = j

ω
(
k
j

)
qj(1− q)k−j if k > j,



Reconstructing the hidden chain Xn

In order to reconstruct the hidden series Xn, the Viterbi algorithm2

is used.
The idea is to provide the latent chain X∗1 = x∗1, . . . , X

∗
N = x∗N that

maximises the likelihood of the latent process given the observed series,
assuming all the parameters are known.

Let P (X1:n|Y1:n) be the likelihood function of the model, then

P (X1:n|Y1:n) =
P (X1:n, Y1:n)

P (Y1:n)

Since P (Y1:n) does not depend on Xn, it is enough to maximise the
probability P (X1:n, Y1:n).
The hidden series is reconstructed as:

X∗ = arg max
X

P (X1:n, Y1:n).

2Viterbi, A.J. (1967), Error bounds for convolutional codes and an asymptotically
optimum decoding algorithm. IEEE Transactions on Information Theory 13 260–269



An application

Modelling the number of weekly cases by human papillomavirus in Girona
from 2010 to 2014:

• The human papillomavirus could be severely under-reported since
most of the sexually active people carry it without any symptoms.

• The series can be considered stationary.

• Series ranges from 0 to 6 weekly cases, with a mean of 1.27 and a
median of 1 case per week. The variance is 1.60. The dispersion
index is 1.26 which is statistically different of 1 (p-value=0.0018):
overdispersed series.

• Recall that a Poisson mix is always overdispersed.



ML estimation

The estimated INAR(1) model for the hidden chain Xn is

Xn = 0.517 ◦Xn−1 +Wn Wn ∼ Poiss (1.623) ,

with the following structure for the observed chain Yn,

Yn =

{
Xn : with probability 0.078
0.327 ◦Xn : with probability 0.922.

Parameter ML estimate s.e.

α̂ 0.517 0.227

λ̂ 1.623 0.616
ω̂ 0.922 0.073
q̂ 0.327 0.085



Reconstruction of the underlying series
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Checking the model

Model validation can be done by using the normal pseudo-residuals.
In the discrete case, the normal pseudo-residuals segment [z−n , z

+
n ] are

required,

z
−
n = Φ

−1 (
P (Yn < yn | (Y1, Y2, · · · , Yn−1, Yn+1, · · · , YT ))

)
= Φ

−1
(u

−
n )

z
+
n = Φ

−1 (
P (Yn ≤ yn | (Y1, Y2, · · · , Yn−1, Yn+1, · · · , YT ))

)
= Φ

−1
(u

+
n )

In order to use them in a plot, normally the mid-pseudo residuals

zmt = φ−1

(
u−t + u+

t

2

)
are considered.

If the model is adequate, the mid-pseudo-residuals should behave as
white noise.



Model validation
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CoVID-19 data

As you already know, data on the number of “cases” of CoVID-19 is far
from being stationary.

Data form https://cnecovid.isciii.es/covid19/.

https://cnecovid.isciii.es/covid19/


CoVID-19 in Uruguay

Data obtained from área de Epidemioloǵıa del MSP, corresponding to the date of 1st symp-
tom.



CoVID-19 in Balearic Islands

Data form https://cnecovid.isciii.es/covid19/.

https://cnecovid.isciii.es/covid19/


CoVID-19 in Spain

Data form https://cnecovid.isciii.es/covid19/.

https://cnecovid.isciii.es/covid19/


Modelling non-stationary under-reported time series
including information of the spread of the disease

As a first approach to find a more realistic model for the data we shall
consider that

• the mean of the latent process Xn varies in time:

Xn = α ◦Xn−1 +Wn(λn)

and /or

• the intensity of the under-reporting varies in time3:

Yn = (1− 1n)Xn + 1n

Xn∑
j=1

ξj 1n ∼ Bern(ω), ξj ∼ Bern(qn)

3periodic effects?



A model for the mean of the latent process

Consider the simplest SIR model,

dS(t)

dt
= −β I(t)S(t)

N
dI(s)

dt
= β

I(t)S(t)

N
− γI(t)

dR(t)

dt
= γI(t)

S healthy but susceptible to get the disease , I(n) infected and thus
transmitters of the disease and R(n) the removed individuals who will
not get infected again.
The parameters of interest are the infection rate β, the removal rate γ,
and the susceptible population N .

Now call A(t) the population affected by the desease:

A(t) = I(t) +R(t)⇒ S(t) = N −A(t)



Adding the last two equations, and replacing I(t) = A(t) − R(t) in the
last one we get

dA(t)

dt
=

β

N
(N −A(t)) (A(t)−R(t))

dR(t)

dt
= γ(A(t)−R(t))

so that

dR

dA
=

dR

dt

dt

dA
=
γ

β

N

N −A(t)
⇒ R(t) =

Nγ

β
log

(
N −A0

N −A(t)

)
+R0

and replacing R(t) in the first equation to get

dA(t)

dt
=

β

N

(
A(t)− Nγ

β
log

(
N −A0

N −A(t)

)
−R0

)
(N −A(t)) ≈

(β − γ)A(t)− (β − γ/2)

N
A2(t)

considering that R0 = 0 and A0 ≈ 0.



The previous equation has the form

dA(t)

dt
= kA(t)

(
1− A

M∗

)

where k = β − γ and M∗ =
N(β − γ)

β − γ/2
and its solution is the logistic

function

A(t) =
M∗A0ekt

M∗ +A0(ekt − 1)

Close to the origin, A(t) ≈ A0ekt, and A∞ can be found solving

β

N

(
A∞ −

Nγ

β
log

(
N −A0

N −A∞

)
−R0

)
(N −A∞) = 0



Finally, the expectation of the innovations

We will consider that the expectation of the hidden process Xn at time
n is the number of new infected individuals

λn = A(n)−A(n− 1)

hence λn grows exponentially at the begining, and after reaching its
maximum A∞ decreases exponentially.

The parameters of the model are then

• α, m = log(M∗), k for the latent process

• ω and q ( or qn) for the under-reporting

Parameters are estimated by Maximum Likelihood, and the likelihood
is computed with the Forward algorithm again.



Uruguay data

Using data from Área de Epidemioloǵıa del MSP, from March 6 2020
till May 14 2020 for the number of daily cases according to the date of
apearence of the 1st symptoms,

Xn = 0.98 ◦Xn−1 +Wn(λn) whereλnis,
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And the model for the observations

Yn =

{
Xn with probability 0.1
0.24 ◦Xn with probability 0.9,

731 observed cases

2661 estimated cases

that is, the system is overlooking 1930 individuals ( 264%), or in other
words, assuming that the Viterbi estimation is the true number of
infected individuals, only 27.5% are reported.



Daily number of cases



Acumulated number of cases



Cases in Catalunya by gender

The model estimates that in the period 01/03/2020 to 13/05/2020,
92469 cases of COVID-19 have occurred in Catalunya, of which 59887
were registered . That is, 54.41% of cases (32582) would not have been
registered in the system.



Cases in Catalunya by region



Cases in Catalunya by groups of age



Under-reported ARMA models

Consider now that the model for the unobservable process is an ARMA(p, r),

Xt = φ1Xt−1 + · · ·+ φpXt−p + θ1εt−1 + · · ·+ θrεt−r

where ε is a Gaussian White Noise process and the observed process is
again

Yn =

{
Xn with probability 1− ω
q ◦Xn with probability ω,

The moments of the observed process can be easily computed and the
autocorrelations of the observed process are

ρY (k) = c(φ1, . . . , φp, θ1, . . . , θr, µε, σ
2
ε , ω, q)ρX(k).



• The likelihood of Y is not easily computable, but it can be estimated
by means of an iterative algorithm based on its marginal distribution (a
mixture of two normals).

• The reconstruction of the unobserved series is a by-product of the
estimation procedure. We have used this methodology recently to es-

timate the incidence of HPV incidence in Girona, and of CoVID-19 in
Heilongjiang (China).

And we are working in an extension, modelling the mean of the Gaussian
innovations of the ARMA as a GAM.
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